SCIENTIFIC CONTRIBUTIONS

in the presented by Chief Assistant Professor Dr. Stanislav Slavov publications, patents and patent applications

for participation in the competition for an associate professor in Mathematical Modeling and

Application of Mathematics (mathematical analysis of the structure of condensed matter in French) (SG, issue 67 of 13.08.2021)

I. Major scientific contributions.

I.1 Synthesis, structure and microstructure of new materials.

- 1. Synthesis, structure and microstructure of bismuth-titanate ceramics, glass-ceramics and glasses from the system Bi₂O₃-TiO₂-SiO₂-Nd₂O₃.
- 2. Synthesis and microstructure of compositions in the system La₂O₃-Gd₂O₃-PbO-MnO-B₂O₃.
- 3. Synthesis and microstructure of compositions in the system TeO₂–Bi₂O₃–Nb₂O₅–ZnO.
- 4. Synthesis and microstructure of new graphene oxide composites, in combination with nanoscale ZnO.

I.2. Dielectric characteristics of ceramics, glass-ceramics and glasses.

- 1. Dielectric characteristics of new materials in the system Bi₂O₃-TiO₂-SiO₂-Nd₂O₃.
- 2. Dielectric characteristics of new materials in the system La₂O₃-Gd₂O₃-PbO-Mn₂O₃-B₂O₃.
- 3. Dielectric characteristics of new graphene oxide composites, in combination with nanoscale ZnO.

I.3. Mathematical modeling and algorithms for parametric estimation.

- 1. Methods for estimating the parameters of differential equations.
- 2. Models created on the basis of graph theory for calculating the fractal dimension of 3D objects for the materials science.

II. Scientific and applied contributions

- 1. New constructions and materials for ceramic capacitor batteries.
- 2. New composite materials from natural raw materials and method for their industrial production.

I. Major scientific contributions.

- I.1. Synthesis, structure and microstructure of new materials.
 - 1. Synthesis, structure and microstructure of bismuth-titanate ceramics, glass-ceramics and glasses from the system Bi₂O₃-TiO₂-SiO₂-Nd₂O₃.
 - (1.1.) Polyphase samples were synthesized in the system Bi₂O₃–TiO₂–Nd₂O₃ using the method of melt quenching, and developed a methodology for the control of the constituent material Auriuvilius and pyrochlore crystalline phases. The method is used to control the high-frequency dielectric characteristics [II.1.].
 - (1.2.) Glass-crystal materials for sensors in the system SiO₂-Bi₂O₃-TiO₂ have been synthesized by a method of melt quenching and controlled crystallization of the glass and subsequent synthesis of thin layers by ink-screen-printing technique [I.2.].
 - (1.3.) The synthesis of selected samples from the system Bi₂O₃-TiO₂-SiO₂-Nd₂O₃ is made on the basis of freely cooled melt (from 1450 °C and 1100 °C to room temperature). The method of the initial control of the amount of starting compositions ensures the formation of polyphase glass-ceramics with content-controlled crystalline phases Bi₁₂TiO₂₀ µ Bi₄Ti₃O₁₂ [I.3.] and single-phase polycrystalline glass-ceramic meaterial contains Bi₁₂TiO₂₀ [I.4.].
 - (1.4.) The influence of SiO₂ и Nd₂O₃ on glass formation in bismuth titanates has been studied [I.7.]. The replacement of Bi₂O₃ with Nd₂O₃ to 10 mol% leads to obtaining a complex of multicomponent glasses and glass-crystal materials with high thermal stability. When adding SiO₂ and Nd₂O₃ have also been shown to help control crystallization and synthesis temperature over a wide concentration range [II.3.], [I.10.].
 - (1.5.) A new approach for the synthesis of ferroelectric ceramic materials from the system has been implemented Bi₂O₃-TiO₂-SiO₂-Nd₂O based on mixing the precursors in a powerful ultrasonic field generated by a specially designed device [I.9.]. In this approach, sonosynthesis stimulates the priority formation of crystal phases, which are characterized by lower synthesis temperatures. In the glasses obtained after subsequent thermal synthesis, a high content of TiO₂.
 - (1.6.) The area of glass formation in a system Bi₂O₃-TiO₂-SiO₂ is defined at cooling rate 10² K/s [I.5., II.6.]. Thermostable glasses are available in the range 10-50 mol % SiO₂, from 10 to 50 mol % Bi₂O₃ and from 10 to 50 mol % TiO₂. A hypothesis for the formation of an amorphous network with a non-traditional glass-forming network with Bi₂O₃, TiO₂ and a classic glass former SiO₂ is proposed.
 - 2. Synthesis and microstructure of compositions in the system La_2O_3 -Gd₂O₃-PbO-MnO-B₂O₃.
 - (2.1.) They are synthesized using the method of melting and quenching, materials in the system La₂O₃-Gd₂O₃-PbO-MnO-B₂O₃, in which the presence of only one perovskite crystalline phase has been established (La_{1-x}Gd_x)_{0.6} Pb_{0.4}MnO₃ [I.1.]. In the system, outside the area of glass formation, glass-ceramic material is obtained directly from the supercooled melt [I.6.].
 - 3. Synthesis and microstructure of compositions in the system TeO₂–Bi₂O₃–Nb₂O₅–ZnO.
 - (3.1.) Tellurium-bismuth glasses were synthesized in the system TeO₂–Bi₂O₃–Nb₂O₅–ZnO, in which the identified phases are ZnTeO₃ and TiTe₃O₈ and an amorphous network composed mainly of TeO₄ structural groups [I.5.].
 - 4. Synthesis and microstructure of new graphene oxide composites, in combination with nanoscale ZnO.
 - (4.1.) A complete series of graphene oxide was synthesized in combination with nanosized zinc oxide, and the structural and phase characteristics of the obtained composites were made [I.8.].

I.2. Dielectric characteristics of ceramics, glass-ceramics and glasses.

- 1. Dielectric characteristics of new materials in the system Bi₂O₃-TiO₂-SiO₂-Nd₂O₃.
- (1.1.) The dielectric properties of the samples in the system Bi₂O₃–TiO₂–Nd₂O₃ have been studied in frequency 2.7 GHz show dielectric constant and dielectric losses with approximately equal parameters to those of lead-containing commercial samples. The control of dielectric parameters is realized by precise control of the percentage of initial oxides and synthesis temperatures [II.1.].
- (1.2.) The dielectric characteristics of sensors based on glass crystalline materials in the system $SiO_2-Bi_2O_3-TiO_2$ have been studied [I.2.]. The samples have very low values of electrical conductivity ($10^{-6}-10^{-9}$ (Ω .cm)⁻¹), dielectric constant between 1000 and 3000 at room temperature. At the Curie temperature (830 °C) the dielectric constant is 180000 and 7000.
- (1.3.) Depending on the controlled melting conditions and additional heat treatment of the supercooled compositions, different polyphase glass-ceramic materials with different microstructures in the systems Bi_2O_3 -Ti O_2 -Si O_2 and Bi_2O_3 -Ti O_2 -Nd₂ O_3 , as well as the presence of several crystallographic phases, the conductivity is in the range 10^{-6} - 10^{-9} ($\Omega \cdot \text{cm}$)⁻¹ [I.10.].
- 2. Dielectric characteristics of new materials in the system La_2O_3 -Gd $_2O_3$ -PbO-Mn $_2O_3$ -B $_2O_3$.
- (2.1.) The dependence of the dielectric relaxation processes for samples in the system La₂O₃-Gd₂O₃-PbO-Mn₂O₃-B₂O₃ of the perovskite phases of the type (La_{1-x}Ga_x)_{0.6}Pb_{0.4}MnO₃ is studied. Polyphase glasses demonstrate higher activation energy even at low relaxation times. In more complex structures, these processes are difficult due to their limited mobility [I.1.].
- 3. Dielectric characteristics of new graphene oxide composites, in combination with nanoscale ZnO.
- (3.1.) In the studied temperature range of about 150 K to 400 K and a frequency range of 10^2 Hz to 10^6 Hz no relaxation processes were observed in the studied composite materials with the participation of graphene oxide [I.8.]. The studied composites have a behavior similar to that of dielectrics with ionic relaxation polarization, which causes increased dielectric losses, which increases with increasing temperature, ie the characteristic maximum for polar dielectrics is missing in the dependence tg δ (T).

I.3. Mathematical modeling and algorithms for parametric estimation.

- **1.** Methods for estimating the parameters of differential equations.
- (1.1.) The iteration scheme Picard-Lindelöf has been modified to show an iterative algorithm for estimating the parameters of ordinary differential equations. The algorithm, in addition to inheriting the advantages shown in the classical algorithms, the parameters can be transformed into a form more convenient for calculation.

2. Models created on the basis of graph theory for calculating the fractal dimension of 3D objects for the materials science.

(2.1.) A new approach to model recognition (crystallographic structures, grain size) using graph theory and its application in mechanical engineering has been developed [II.5.]. The estimation method is based on calculating the fractal dimension of 3D objects and calculating the density of 3D visibility graphs at a given SEM image.

II. Scientific and applied contributions

1. New constructions and materials for ceramic capacitor batteries.

(1.1.) A combination of ceramic and glass-ceramic materials has been created, which in one with a specific construction and a combination of conventional and new physical principles,

which are the basis of the created hybrid capacitor bank of a new type [Patent № BG67056 B1/01.06.2020].

- 2. New composite materials from natural raw materials and method for their industrial production.
- (2.1.) A new ceramic material has been created, as well as a new technological sequence of procedures for industrial production of conductive composite ceramic materials with application for membranes for hydrogen generators. [Applied patent: RO1358 /25.05.2020 ; U/00020/26.05/2020]

Summaries of articles

[I.1.] R Raykov, A Staneva, Y Dimitriev, S Slavov, S Soreto Teixeira, PR Prezas, L. Costa, Dielectric relaxation in glass and glass-ceramic materials of the system La₂O₃-Gd₂O₃-PbO-MnO-B₂O₃, *International Journal of Applied Glass Science* 10 (1), 75-82, 2019

- Borate-based glasses in the system La₂O₃-Gd₂O₃-PbO-MnO₂-B₂O₃, synthesized by the method of melting and quenching are synthesized with a fixed content of B₂O₃ (% mol = 30). Dielectric measurements are made in the frequency range of 100 Hz to 1 MHz and temperatures from 100 °C to 400 °C. A multiphase product was obtained with (La_{1-x}Ga_x)_{0.6}Pb_{0.4}MnO₃ perovskite type crystalline phase, in combination with the amorphous phase. Dielectric relaxation properties are highly phase dependent, especially when amorphous phases with high activation energy and low relaxation frequency due to dipole mobility limitations.

[I.2.] AS Afify, SS Slavov, AER Mahmoud, M Hassan, M Ataalla, A Staneva, Amr Mohamed, Determination of the Sensing Characteristics of SiO₂-Bi₂O₃-TiO₂ System towards Relative Humidity, *Journal of Chemical Technology and Metallurgy* 53 (6), 1073-1080, 2018

- The characteristics for reading the relative humidity are determined (RH) of sensors in the system SiO₂-Bi₂O₃-TiO₂. The samples were synthesized by the method of melt, cooling and controlled crystallization of glass. The sensors were obtained by screen printing of the prepared compositions on aluminum substrates with Pt electrodes. The sensors have been tested in the range (0.0 - 96%) of relative humidity at room temperature. Most of the obtained glass-ceramic materials have a lower sensitivity to RH. The composition 20SiO₂.30Bi₂O₃.50TiO₂ has the highest value of dielectric constant (3000) and the lowest value of dielectric loss (0.0002) at room temperature, which makes it a promising candidate for some industrial applications such as energy storage, electronic capacitors and memory devices.

[I.3.] S Slavov, Z Jiao, GLASS-CRYSTALL MATERIALS CONTAINING Bi₁₂TiO₂₀ AND Bi₄ Ti₃O₁₂ PHASES OBTAINED FROM FREELYCOOLED MELTS OF Bi₂O₃-TiO₂-SiO₂-Nd₂O₃ SYSTEM, *Journal of Chemical Technology & Metallurgy* 53 (4), 759-764, 2018

- Synthesis of selected samples from the system Bi₂O₃-TiO₂-SiO₂-Nd₂O₃ is made on the basis of freely cooled melts in the range of 1450 °C to 1100 °C. The initial control of the amount of starting compositions ensures the formation of polyphase glass-ceramics containing Bi₁₂TiO₂₀ and Bi₄Ti₃O₁₂. Amorphous phases are based on oxides of silicon, bismuth, titanium and aluminum: Si-O-Si, Si-O-Ti, Si-O-Al bridge connections and SiO₂ depolymerized groups and isolated TiO₄ and TiO₆ groups. The present study shows a way to control the formation of crystalline and amorphous phases in bulk polycrystalline materials based on a selected system.

[I.4.] S Slavov, Z Jiao, Bi₁₂TiO₂₀ crystallization in a Bi₂O₃-TiO₂-SiO₂-Nd₂O₃ system, *Journal of Physics: Conference Series* 992 (1), 012040, 2018

- Polycrystalline single-phase bismuth titanate is obtained by free cooling from a melt heated to 1170 °C. The control of the starting compositions in the system $Bi_2O_3/TiO_2/SiO_2/Nd_2O_3$ as well as

the thermal gradient of the thermal regimes of heating and cooling leads to the formation of specific structures and microstructures of monophasic silylenite ceramics. The main phase Bi₁₂TiO₂₀ eincorporated into amorphous network groups based on silicon oxides, bismuth and titanium.

[I.5.] Sv Ganev, S Parvanov, S Slavov, A Bachvarova-Nedelcheva, R Iordanova, Y Dimitriev, Influence of TiO2 on the thermal stability and crystallization of glasses within TeO₂–Bi₂O₃–Nb₂O₅–ZnO system, *Bul. Chem. Comm.*, 49, (2017) 103-109

- In this study of the glass in the system $\text{TeO}_2 - \text{Bi}_2\text{O}_3 - \text{Nb}_2\text{O}_5 - \text{ZnO}$ glasses based on TeO_2 , containing Nb_2O_5 and Bi_2O_3 up to 10 mol%, ZnO from 5 up to 10 mol%, while TiO₂ varies from 5 to 50 mol%. The resulting glasses are transparent and yellow (TiO₂ up to 20 mol%). The thermal stability of the samples was determined by DTA using the difference ΔT between the exothermic peak of crystallization (T_x) and glass formation temperature Tg ($\Delta T = 50-115$ ° C). Several crystal phases were identified by XRD, basically ZnTeO₃ and TiTe₃O₈ (in compositions over 20 mol% TiO₂) due to their good dielectric properties. Spectrum analysis shows that the glass network consists mainly of units TeO₄. Preliminary dielectric measurements show that the samples have low conductivity and no significant change in dielectric losses up to 600 °C.

[I.6.] R Raykov, A Staneva, Y Dimitriev, E Kashchieva, S Slavov, B Blagoev, Glass and glassceramics in the La₂O₃–Gd₂O₃–PbO–MnO–B₂O₃ system, *Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B*, 56, 4, (2015) 145-148

- The studied compositions in the system La₂O₃ – Gd₂O₃ – PbO – MnO – B₂O₃ are located in a section of the phase diagram with a constant content of B₂O₃ (30 mol%). For nominal composition $30B_2O_3.8.75La_2O_3.8.75Gd_2O_3.23.33PbO.29.17MnO$, which is outside in the field of glass formation, a glass-ceramic material is obtained directly from the supercooled melt with a basic crystalline phase rare-earth manganite.

[I.7.] S. Slavov, E. Kashchieva, S. Parvanov, Y. Dimitriev, "The effect of Nd substitution of the glass forming ability and termal properties in the system Bi₂O₃-TiO₂-SiO₂", *Journal of Chemical Technology & Metallurgy*, 50, 4, (2015) 435-440

- The processes for glass formation in the system are studied Bi₂O₃-TiO₂-SiO₂ wider concentration range. Increasing the content of SiO₂ leads to a shift of the absorption limit to lower wavelengths. The results of the experiment show that it is possible to obtain low-melting glasses containing 5 mol % - 20 mol % SiO₂ and 30 mol % - 63 mol % Bi₂O₃ by the method of melting and quenching. The replacement of Bi₂O₃ with Nd₂O₃ up to 10 mol% leads to the production of complex multicomponent glasses and glass-crystal materials with high thermal stability.

[I.8.] Anna Staneva, Boris Martinov, Stanislav Slavov, Daniela Karashanova, Janna Mateeva, BMG Melo, Luis C Costa, DIELECTRIC PROPERTIES OF NEW COMPOSITES BASED ON GRAPHENE OXIDE AND NANO-SIZED ZnO, *Journal of Chemical Technology & Metallurgy*, 56 (1), 54-66, 2021

- A complete series of graphene oxide and nanosized zinc oxide was obtained and investigated, and the structural and phase composition of the obtained composites was determined. The complex dielectric constant for all samples was measured as a function of frequency. All dielectric characteristics were studied (frequencies from 100 Hz to 1 MHz and temperatures from 150 to 400 K). In the studied temperature range of about 150 K to 400 K and a frequency range of 10^2 Hz to 10^6 Hz no relaxation processes are observed, and the studied composites have a behavior similar to that of dielectrics with crystal structure and ionic relaxation polarization, which causes increased dielectric losses.

[I.9.] P.V. Angelov, S.S. Slavov, Sv. R. Ganev, Y.B. Dimitriev, J.G. Katzarov, Direct ultrasonic synthesis of classical high temperature ceramic phases at ambient conditions by innovative method, *Bul. Chem. Comm.*, 45, Special issue A (146 – 152) 2013

- A new approach was used for the synthesis of ferroelectric ceramic materials from the system Bi₂O₃-TiO₂-SiO₂-Nd₂O₃ based on treatment of precursors with a high-power ultrasonic field generated by a specialized device made to order. When applying the method of synthesis, the high-temperature phase Bi₁₂TiO₂₀ was synthesized at room temperature. The formation of this phase is accompanied by the appearance of a small amount of the phase Bi₄Si₃O₁₂ (for samples with the presence of SiO₂ in batch composition) μ Nd₂O₃ (for samples with Nd₂O₃ presence in the initial composition). Subsequent thermal treatment of these samples (in the temperature range 500°C - 1200°C) shows the formation of the phase Bi₄Ti₃O₁₂ and phase Bi₁₂TiO₂₀.

[I.10.] Stanislav S. Slavov, Milena Z. Krapchanska, Elena P. Kashchieva, Yanko B. Dimitriev, "Electrical characteristics of bismuth titanate ceramics containing SiO₂ and Nd₂O₃", *Processing and Application of Ceramics* 4 [1] (2010) 39–43

- Bismuth titanate ceramics containing SiO₂ and Nd₂O₃ as additives, is synthesized in two different ways of cooling the melts. The introduction of SiO₂ and Nd₂O₃ leads to more complex crystallization involving several phases, including Bi₄Ti₃O₁₂. The applied synthesis methods have been shown to be suitable for generating various microstructures in bulk ceramics from bismuth titanate, which is a promising basis for changing their electrical properties. Increasing the content of SiO₂ improves glass formation, and the addition of Nd₂O₃ stimulates crystallization. The conductivity of the selected samples is determined by an impedance analyzer in the frequency range from 10 to 100 kHz and DC resistive bridge using two terminal method. All tested samples are conductive dielectrics 10^{-6} – 10^{-9} ($\Omega \cdot$ cm)⁻¹.

[II.1.] SS Slavov, S Soreto Teixeira, MPF Graça, LC Costa, V Popova, Y. Dimitriev, Bi₂O₃–TiO₂–Nd₂O₃ lead-free material for microwave device applications, *International Journal of Applied Glass Science* 10 (2), 202-207, 2018

- Lead-free Bi₂O₃–TiO₂–Nd₂O₃ system and its potential application for microwave devices applications were studied. The samples were synthesized using the melt quenching method. According to the X-Ray Diffraction analysis, the samples are polycrystalline with three different crystal phases. Measurements of the dielectric complex permittivity function were made at 2.7 GHz, using a resonant cavity and the small perturbation theory. The values of the dielectric permittivity of the prepared materials were compared with the commercial ones, and we conclude that these new lead-free materials have a good potential to replace lead-containing devices for microwave frequency applications. The use of polyphase samples in the system Bi₂O₃–TiO₂–Nd₂O₃ may be useful for electronic application at microwave frequencies. The dielectric properties of these investigated samples are interesting, as they present dielectric constants close to the commercial ones (about 7), with low losses (in the order of 10). They have the advantage of being lead-free and easy to sinter. The control of the percentage of the observed phases is a challenge to obtain better dielectric properties and their combined influence may be a solution to the problem of the content of harmful raw elements in electronic components.

[II.2.] S. Slavov, Y. Dimitriev, GLASS FORMATION IN THE SYSTEM Bi₂O₃-TiO₂-SiO₂, *Journal of Chemical Technology & Metallurgy*, 51, 5, (2016) 536-546

- In this study, glass and glass-crystal materials were synthesized in the system Bi_2O_3 -TiO₂-SiO₂. One limiting condition is that the melting temperature does not exceed 1450 °C, which would limit the losses of components with a lower melting point. The field of glass formation is determined at the cooling rate 10^2 K/s. Thermally stable glasses are obtained in the range 10 - 50 mol % SiO₂, from 10 to 50 mol % Bi $_2O_3$ and from 10 to 50 mol % TiO₂ in the central part of the phase diagram. Beyond this limit, glass-crystal materials are involved in the phases: $Bi_{12}TiO_{20}$, $Bi_4Ti_3O_{12}$. The high content of Bi_2O_3 at the expense of SiO₂ leads to a reduction of the melting point and to lower values of the temperature of the glass phase transition Tg. One general conclusion is that the glasses are stable up to 450° C - 500° C.

[II.3.] Stanislav S. Slavov, Elena P. Kashchieva, Svetlin B. Parvanov, Yanko B. Dimitriev "Sinthesis of doped bismuth titanate ceramics with Nd₂O₃ and SiO₂ and their electrical properties" *Journal of Chemical Technology and Metallurgy*, 2, 48, (2013) 174-178

- Bismuth titanate ceramics containing SiO₂ and Nd₂O₃ as additives, is synthesized by a method of cooling the melt in the system Bi₂O₃-TiO₂-Nd₂O₃-SiO₂ in the temperature range 1260°C - 1500°C. The addition of SiO₂ and Nd₂O₃ allows control of crystallization, glass formation ability, melting temperature and Curie temperature. It was found that all tested samples are dielectric materials with conductivity between 10⁻⁹ and 10⁻¹³ (Ω cm)⁻¹ at room temperature, dielectric constant from 1000 to 3000 and dielectric losses tg δ between 0,0002 and 0,1.

[II.4.] S Slavov, T Tsvetkov, PICARD-LINDELOF ITERATIONS AND MULTIPLE SHOOTING METHOD FOR PARAMETER ESTIMATION, *International Journal of Applied Mathematics* 33 (5), 919, 2020

- In this article, we modify the Picard-Lindelöf iteration scheme in order to show an iteration algorithm for parameter estimation of ordinary differential equations. The proposed algorithm inherited the advantages exhibited in the classical algorithms and, moreover, the parameters can be transformed to a form that are convenient and suitable for computation. In the end, a numerical example has also been discussed to highlight the results.

[II.5.] Matej BABIČ, Gyula VARGA, Daniel GHICULESCU, Michal JAKUBOWICZ, Stanislav SLAVOV, George SERITAN, Dragan MARINKOVIĆ, A NOVEL APPROACH FOR PATTERN RECOGNITION BY USING GRAPH THEORY AND ITS APPLICATION IN MECHANICAL ENGINEERING, ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, 19, 3, 2021, ISSN 1583-7904

- In this article, we present a novel approach for pattern recognition by using graph theory and its application in mechanical engineering. One of the most important characteristics of the microstructure of a material is the grain size. The analysis of structure is based on statistical methods and on the principle: from the general image of the structure to the particular (individual grains) by averaging. With computer methods, material structure is characterized by analyzing each grain. When using computer software tools it is also possible to analyze the area occupied by a certain structure directly, without the need for approximate calculations, as well as automatically create a report file. The aim of this paper is to present a new methodology; a novel approach for pattern recognition by using graph theory and its application in the analysis of grain size distribution values. These values were obtained from SEM images of robot laser-hardened specimens using estimating methods to calculate the fractal dimension of 3D objects and calculating the density of 3D visibility graphs.

[II.6.] W. Wisniewski, S. Slavov, Ch. Rüssel, Y. Dimitriev, Phase Formation, Crystal Orientations and Epitaxy in Bi₂O₃/TiO₂/SiO₂ (/Nd₂O₃) Glass-Ceramics, *CrystEngComm* 19, 20 (2017) 2775-2785, <u>https://doi.org/10.1039/C7CE00542C</u>

- Four glasses in the Bi₂O₃/TiO₂/SiO₂ and Bi₂O₃/TiO₂/SiO₂/Nd₂O₃ systems are melted and poured into graphite moulds where they show spontaneous crystallization during cooling. The crystal phases α -Bi₂Ti₄O₁₁, Bi_{4-x}Nd_xTi₃O₁₂, Bi₂ Si_{1-y}Ti_yO₅, TiO₂ and probably Bi₂Ti₂O₇ are shown to crystallize using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDXS) and electron backscatter diffraction (EBSD). A previously unknown miscibility of Bi₂SiO₅ and Bi₂TiO₅ is indicated. Oriented layers of monoclinic α -Bi₂Ti₄O₁₁, Bi_{4-x}Nd_xTi₃O₁₂ and Bi₂Si_{1-y}Ti_yO₅ are observed. A perfectly epitaxial relationship between Bi_{4-x}Nd_xTi₃O₁₂ and Bi₂Si_{1-y}Ti_yO₅ is proven by EBSD. Crystals with the composition Bi ₂Si_{1-y}Ti_yO₅ with y = 0.33, 0.5 and 0.66 are detected.

[III.1.] S Slavov, Z Jiao, Bismuth-Titanate Bi₂Ti₂O₇ Crystallization in the Bi₂O₃/TiO₂/SiO₂/Nd₂O₃ System, Advanced Nanotechnologies for Detection and Defence against CBRN Agents, 367-372, 2018

- The study demonstrates a way to synthesize compositions from the system $Bi_2O_3/TiO_2/SiO_2/Nd_2O_3$, in which only one crystalline phase is present: bismuth titanate pyrochlore $(Bi_2Ti_2O_7)$. The synthesis is carried out in two successive stages: initial homogenization of the oxide for 15 minutes and melting at temperatures respectively 1100 °C and 1450 °C. Free cooling to room temperature is done at a rate of about 100 K/min. Using infrared spectroscopy (FTIR) identified the structure and microcrystals distributed in the matrix. Thus, by controlling the starting oxides and the temperature regimes of the synthesis, a single-phase polycrystalline glass-ceramic and a phase-containing ceramic are obtained $Bi_2Ti_2O_7$, polymerized SiO₄ octahedra, featuring Bi_2O_3 , as a non-traditional glass former.